Books
Rituraj Dixit

Hands-on NumPy for Numerical Analysis

Unlock the Power of NumPy to Accelerate Data Analysis and Computing.Key Features● Master NumPy concepts with hands-on examples and real-world use cases.● Learn efficient numerical data analysis and performance optimization.● Explore advanced NumPy functions for data science and ML workflows.Book DescriptionNumPy is the backbone of numerical computing in Python, powering everything from scientific research to machine learning and AI applications. Mastering NumPy is essential for anyone working with data, enabling faster computations, efficient data structures, and seamless integration with advanced analytical tools.Hands-on NumPy for Numerical Analysis is a comprehensive guide that takes you from the fundamentals of NumPy to its advanced applications. Through hands-on examples and real-world scenarios, this book equips data scientists, analysts, and machine learning engineers with the practical skills needed to manipulate large datasets and optimize performance. Key topics include array operations, linear algebra, signal processing, and machine learning implementations, all covered with detailed explanations and step-by-step guidance.Whether you're building your foundation in numerical computing or looking to enhance your data analysis workflows, this book will give you a competitive edge. Don't get left behind—harness the full power of NumPy to supercharge your data science and machine learning projects today!What you will learn● Master NumPy array operations for high-performance numerical computing.● Optimize data analysis workflows with efficient NumPy techniques.● Perform advanced linear algebra and matrix operations using NumPy.● Conduct statistical and exploratory data analysis with NumPy tools.● Build end-to-end data processing pipelines with NumPy.● Leverage NumPy for predictive modeling and machine learning tasks.Table of Contents1. Getting Started with NumPy2. Understanding NumPy Array3. Data Type (dtype) in NumPy Array4. Indexing and Slicing in NumPy Array5. NumPy Array Operations6. NumPy Array I/O7. Linear Algebra with NumPy8. Advanced Numerical Computing9. Exploratory Data Analysis10. Performance Optimization11. Implementing a Machine Learning Algorithm     IndexAbout the AuthorsRituraj Dixit brings over a decade of extensive experience in data engineering and analytics, specializing in enterprise-scale data solutions. As a Technical Manager at Cognizant Technology Solutions, Singapore, he leads complex data transformation initiatives, leveraging his expertise in ETL processes, data warehousing, big data architectures, and cloud platforms.Throughout his career, he has successfully delivered innovative solutions for global organizations, driving business value through machine learning implementations, advanced analytics frameworks, and enterprise data platforms. His ability to seamlessly blend technical expertise with business acumen has enabled companies to maximize the value of data-driven insights.A passionate advocate for technology education, Rituraj dedicates significant time to mentoring emerging data professionals, helping them navigate the complexities of the modern data ecosystem. He is also a member of several technology and professional organizations, including the Singapore Computer Society (SCS) and the Association for Computing Machinery (ACM).
607 printed pages
Copyright owner
Orange Education
Original publication
2025
Publication year
2025
Have you already read it? How did you like it?
👍👎
fb2epub
Drag & drop your files (not more than 5 at once)