de
Books
Clément Stenac,Du Phan,Kenji Lefèvre,Mark Treveil,Nicolas Omont

MLOps – Kernkonzepte im Überblick

Erfolgreiche ML-Pipelines entwickeln und mit MLOps organisatorische Herausforderungen meistern

Stellt DevOps-Konzepte vor, die die speziellen Anforderungen von ML-Anwendungen berücksichtigen
Umfasst die Verwaltung, Bereitstellung, Skalierung und Überwachung von ML-Modellen im Unternehmensumfeld
Für Data Scientists und Data Engineers, die nach besseren Strategien für den produktiven Einsatz ihrer ML-Modelle suchen

Viele Machine-Learning-Modelle, die in Unternehmen entwickelt werden, schaffen es aufgrund von organisatorischen und technischen Hürden nicht in den produktiven Betrieb. Dieses Buch zeigt Ihnen, wie Sie erprobte MLOps-Strategien einsetzen, um eine erfolgreiche DevOps-Umgebung für Ihre ML-Modelle aufzubauen, sie kontinuierlich zu verbessern und langfristig zu warten.
Das Buch erläutert MLOps-Schlüsselkonzepte, mit denen Data Scientists und Data Engineers ihre ML-Pipelines und -Workflows optimieren können. Anhand von Fallbeispielen, die auf zahlreichen MLOps-Anwendungen auf der ganzen Welt basieren, geben neun ML-Experten wertvolle Einblicke in die fünf Schritte des Modelllebenszyklus — Build, Preproduction, Deployment, Monitoring und Governance. Sie erfahren auf diese Weise, wie robuste MLOps-Prozesse umfassend in den ML-Produktworkflow integriert werden können.

308 printed pages
Copyright owner
Bookwire
Original publication
2021
Publication year
2021
Publisher
O'Reilly
Translator
Marcus Fraaß
Have you already read it? How did you like it?
👍👎
fb2epub
Drag & drop your files (not more than 5 at once)