Do you know a related problem? We can scarcely imagine a problem absolutely new, unlike and unrelated to any formerly solved problem; but, if such a problem could exist, it would be insoluble. In fact, when solving a problem, we always profit from previously solved problems, using their result, or their method, or the experience we acquired solving them. And, of course, the problems from which we profit must be in some way related to our present problem. Hence the question: Do you know a related problem?
There is usually no difficulty at all in recalling formerly solved problems which are more or less related to our present one. On the contrary, we may find too many such problems and there may be difficulty in choosing a useful one. We have to look around for closely related problems; we LOOK AT THE UNKNOWN, or we look for a formerly solved problem which is linked to our present one by GENERALIZATION, SPECIALIZATION, or ANALOGY.
The question we discuss here aims at the mobilization of our formerly acquired knowledge (PROGRESS AND ACHIEVEMENT, 1). An essential part of our mathematical knowledge is stored in the form of formerly proved theorems. Hence the question: Do you know a theorem that could be useful? This question may be particularly suitable when our problem is a “problem to prove,” that is, when we have to prove or disprove a proposed theorem