Ivan Pastine

Introducing Game Theory: A Graphic Guide (Introducing…)

When should you adopt an aggressive business strategy? How do we make decisions when we don't have all the information? What makes international environmental cooperation possible?
Game theory is the study of how we make a decision when the outcome of our moves depends on the decisions of someone else. Economists Ivan and Tuvana Pastine explain why, in these situations, we sometimes cooperate, sometimes clash, and sometimes act in a way that seems completely random.
Stylishly brought to life by award-winning cartoonist Tom Humberstone, Game Theory will help readers understand behaviour in everything from our social lives to business, global politics to evolutionary biology. It provides a thrilling new perspective on the world we live in.
273 printed pages
Copyright owner
Bookwire
Original publication
2017
Publication year
2017
Publisher
Icon Books
Have you already read it? How did you like it?
👍👎

Impressions

  • Дмитрийshared an impression4 years ago
    👍Worth reading
    🔮Hidden Depths
    💡Learnt A Lot
    🚀Unputdownable

    Cool stuff

  • Александр Лубневскийshared an impression5 years ago
    👍Worth reading
    💡Learnt A Lot

Quotes

  • Shin Loon Leehas quoted3 years ago
    Models are simple enough to analyze but still capture some important feature of the real-world problem. A cleverly chosen simple model can help us learn something useful about the complex real-world problem.
  • Henrik Ulrik Anker Hansenhas quoted5 years ago
    Game theorists solve the Guessing Game in a similar fashion using iterative elimination of dominated strategies.
    Remember that you’re looking for 2/3 of the average number entered into the contest. If all contestants were to pick the highest permissible number, 100, the average would be 100. Hence, no matter what one expects the average to be, it makes no sense to ever guess a number greater than 2/3 of 100, which is 67.
    In other words, any strategy with a guess greater than 67 is dominated by 67. A strategy is dominated if it (in this case, a guess higher than 67) is worse than another strategy (guessing 67) regardless of what other players do. Hence, even if no one else is rational, all strategies with a guess greater than 67 can be eliminated.
  • mishunguyen191005has quotedlast year
    vidual benefits at the expense of others.

On the bookshelves

fb2epub
Drag & drop your files (not more than 5 at once)